This handbook provides guidance on the construction of Sustainable Drainage Systems (SUDS) to facilitate their effective implementation within developments. The handbook is aimed at site engineers and SUDS practitioners.

This site handbook can also be used in conjunction with CIRIA publication C697, *The SUDS Manual* which provides comprehensive guidance on the planning, design, construction and operation of SUDS.

This book constitutes Environment Agency R&D Report SC020114/2

This handbook was produced as a result of CIRIA Research Project RP697, SUDS updated guidance on technical design and construction. The work was carried out by HR Wallingford (Bridget Woods-Ballard and Richard Kellagher), Black and Veatch (Peter Martin), University of Abertay (Chris Jefferies), Robert Bray Associates (Bob Bray) and CIRIA (Paul Shaffer).

The research leading to the publication of *The SUDS Manual* (CIRIA C697) – from which this handbook is largely derived – was funded by

ABG Geosynthetics, Atlantis Water Management, Biwater, Dti

CIRIA wishes to express its thanks to the members of the Project Steering Group for their contributions. CIRIA’s project manager was Paul Shaffer.
Site handbook for the construction of SUDS

Woods Ballard, B; Kellagher, P; Martin, P; Jefferies, C; Bray, R; Shaffer, P.

CIRIA
ISBN-10 0-86017-698-3

Keywords
Urban drainage, climate change, flooding, environmental good practice, rivers and waterways, pollution prevention, sustainable construction, sustainable resource use, water quality, urban hydrogeology, urban regeneration, water infrastructure, rivers and waterways.

Reader interest
Developers, landscape architects, consulting engineers, local authorities, architects, highway authorities, environmental regulators, planners, sewerage undertakers and other organisations involved in the provision and maintenance of surface water drainage to new and existing developments.

Classification

<table>
<thead>
<tr>
<th>AVAILABILITY</th>
<th>Unrestricted</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENT</td>
<td>Guidance/advice</td>
</tr>
<tr>
<td>STATUS</td>
<td>Committee-guided</td>
</tr>
<tr>
<td>USERS</td>
<td>Planners, developers, engineers, regulators.</td>
</tr>
</tbody>
</table>

This publication is designed to provide accurate and authoritative information on the subject matter covered. It is sold and/or distributed with the understanding that neither the authors nor the publisher is thereby engaged in rendering a specific legal or any other professional service. While every effort has been made to ensure the accuracy and completeness of the publication, no warranty or fitness is provided or implied, and the authors and publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damage arising from its use.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, including photocopying and recording, without the written permission of the copyright-holder; application for which should be addressed to the publisher. Such written permission must also be obtained before any part of this publication is stored in a retrieval system of any nature.

If you would like to reproduce any of the figures, text or technical information from this or any other CIRIA publication for use in other documents or publications, please contact the Publishing Department for more details on copyright terms and charges at: publishing@ciria.org Tel: 020 7549 3300.
Acknowledgements

Research contractor

This guidance has been produced as part of CIRIA Research Project 697. The detailed research was carried out by HR Wallingford Ltd, Black and Veatch, University of Abertay and CIRIA.

Authors

Bridget Woods Ballard MA MSc DIC CEng MICE MCIWEM
Bridget is a principal engineer at HR Wallingford. She has more than 15 years’ experience in hydrology and sustainable flood risk management and has been a key contributor to recent SUDS research on system costs, maintenance and performance for both government and the water industry.

Richard Kellagher BEng MSc CEng MICE MCIWEM
Richard is a technical director of HR Wallingford. He has been involved in drainage and SUDS research and has produced a number of guidance documents on drainage related issues for both CIRIA and HR Wallingford. His experience in drainage also includes sewerage modelling and auditing, master plans for cities overseas and leading a number of European research projects.

Peter Martin BSc MBA CEng FICE MCIWEM MCMI
Peter is operations director at Black & Veatch Ltd and has more 25 years’ practical experience of the design and construction wastewater and drainage projects in the UK and overseas. He was the principal author of the original suite of CIRIA SUDS manuals. In addition, he managed the UK elements of the joint UKWIR/WERF research project Performance and Whole Life Costs of BMPs and SUDS.

Chris Jefferies BSc MSc PhD CEng MICE MCIWEM
Professor of Environmental Engineering and Head of Urban Water Technology Centre at the University of Abertay Dundee, Chris has more than 30 years’ experience designing, researching and training in urban drainage. He has co-authored a range of reports on the performance and maintenance of SUDS.

Robert Bray MLI BSc (Hons) DipLD
A director of Robert Bray Associates, Bob has designed SUDS schemes since 1996 and has recently designed SUDS for schools, housing and public open space. He is co-author of Sustainable drainage systems – hydraulic, structural and water quality advice (CIRIA C609) and The operation and maintenance of sustainable drainage infrastructure and associated costs (HR Wallingford report SR 626).
Paul Shaffer BSc (Hons)
Paul is an associate at CIRIA and for 10 years has encouraged and implemented the sustainable use and management of water in the built environment. He has been responsible for a number of projects to help overcome barriers to the sustainable management of water.

CIRIA manager
CIRIA’s project manager was Paul Shaffer

Contributors
CIRIA wishes to acknowledge the following individuals who provided substantial additional information for the case studies.

Aidan Millerick Micro Drainage
Simon Bamford Land & Water Remediation Ltd/British Waterways.
Contents

1 Introduction to SUDS .. 9
2 How SUDS differ from conventional drainage 10
3 General construction issues associated with SUDS 12
4 Construction planning ... 14
5 Erosion ... 18
6 Sediment control .. 19
7 Pollution control .. 20
8 Inspections .. 22
9 Method statements .. 23
10 Emergency contacts .. 24
11 SUDS components .. 25
 11.1 Pre-treatment systems .. 25
 11.2 Green roofs .. 26
 11.3 Soakaways ... 28
 11.4 Rainwater harvesting ... 29
 11.5 Filter strips .. 30
 11.6 Trenches ... 32
 11.7 Swales ... 33
 11.8 Bioretention ... 35
 11.9 Pervious pavements ... 36
 11.10 Geocellular systems ... 38
 11.11 Sand filters ... 40
 11.12 Infiltration basins ... 41
 11.13 Detention basins .. 42
 11.14 Ponds .. 43
 11.15 Wetlands .. 45
12 References ... 47

Appendices
 A1 Erosion control ... 49
 A2 Sediment control ... 52

Glossary .. 54

Abbreviations .. 62
Figures

Figure 3.1 Earthworks on a SUDS site ... 13
Figure 4.1 Completed swale ... 17
Figure 7.1 Construction of a swale .. 20
Figure 11.1 Typical cross-section through a green roof system 28
Figure 11.2 Typical cross-section of a soakaway 29
Figure 11.3 Schematic view of a generic rainwater harvesting system 30
Figure 11.4 Typical cross-section through a filter strip 31
Figure 11.5 A filter trench under construction 33
Figure 11.6 A swale under construction .. 34
Figure 11.7 Typical cross-section through a bio-retention facility 36
Figure 11.8 Typical cross-section through a pervious pavement 38
Figure 11.9 Example of proprietary geocellular system under construction ... 39
Figure 11.10 Typical cross-section through a sand filter 40
Figure 11.11 Typical cross-section through an infiltration basin 42
Figure 11.12 A detention basin schematic 43
Figure 11.13 A pond under construction ... 44
Figure 11.14 A wetland after initial planting 45
Sustainable Drainage Systems (SUDS) are drainage systems designed to contribute to the achievement of sustainable development. Rather than traditional pipe and sewer arrangements, the philosophy of SUDS is to replicate as closely as possible the natural drainage from a site before development.

They aim to mimic natural drainage from an undeveloped situation, where rainfall soaks into the ground and saturates soil and vegetation before significant runoff occurs. The systems are designed both to manage the environmental risks resulting from urban runoff and to contribute wherever possible to environment enhancement.

SUDS elements are generally small scale and relatively shallow. They usually require the use of only fairly simple civil engineering construction and landscaping operations, such as excavation, filling, grading, topsoiling, seeding and planting. These operations are specified in various standard construction documents, such as the Civil Engineering Specification for the Water Industry (CESWI, WRc, 1998).

The performance and operation of SUDS depend upon careful planning and implementation during the construction phase, because there are some specific considerations that require changes to conventional construction practices. The use of inappropriate plant, failure to protect the system from construction runoff and detritus, and a lack of integration of landscaping with construction, can all be the cause of poor performance SUDS.

This handbook provides readily accessible guidance for easy reference and use on site. The CIRIA publication, The SUDS Manual (C697), provides more detailed guidance for owners, developers, planners, designers, contractors, managers and operators.
Appropriately designed, constructed and maintained SUDS are more sustainable than conventional drainage methods because they can mitigate many of the adverse effects of urban stormwater runoff on the environment. They achieve this through:

- controlling run-off rates and volumes, thereby lessening the risk of downstream flooding
- reducing pollutant concentrations, thereby protecting downstream water bodies
- encouraging natural groundwater recharge (where appropriate)
- contributing to the enhanced amenity and aesthetic value of developed areas
- providing habitats for wildlife in urban areas and opportunities for biodiversity enhancements.

As they are intended to mimic nature, the construction and landscaping techniques required are generally simple. However, it is important to realise that the SUDS principles described above need to apply to the construction phase as much as the finished product.

Therefore, from a construction viewpoint, SUDS require that specific attention is given to:

1. The planning and phasing of construction to ensure that the performance of the facilities is not compromised by over compaction or clogging with construction debris for example. Please refer to the section on general construction issues associated with SUDS in this handbook.
2. Construction planning taking account of programming and erosion, sediment and pollution control measures, together with the need for method statements and inspections by the designer. Please refer to the sections on construction planning, inspections and method statements.
3. Erosion which will reduce the effectiveness of SUDS facilities, and add to the silt load that any other drainage feature downstream will have to deal with. Please refer to the section on erosion, which addresses both erosion control procedures and erosion protection techniques.
4. Sediment entrapment facilities which are necessary to reduce sediment discharges to downstream properties and receiving waters. Please refer to the section on sediment control.

5. Surface water runoff and pumped water from construction sites which must not pollute receiving waters. Please refer to the section on pollution control.
3 General construction issues associated with SUDS

- The planning of temporary drainage during the construction phase is critical both to the success of SUDS and to the avoidance of pollution downstream. Silt-laden waters from construction sites are one of the most common forms of waterborne pollution.

- Runoff from the construction site must not be allowed to enter SUDS drainage systems unless it has been allowed for in the design and specification. Construction runoff is heavily laden with silt, which can clog infiltration systems, build up in storage systems and pollute receiving waters.

- Normally, drainage is an early activity in construction. For SUDS, although the form of the drainage will be constructed during the earthworks phase, the final construction should not take place until the end of site development work, unless adequate provision is made to remove any silt that is deposited during construction operations.

- All inlets and outlets should be carefully constructed, taking account of all design details. Inlet systems should spread the flow and must avoid scouring of soil or other material from surfaces. Outlets will tend to be smaller than inlets forcing water to be stored within the drainage system.

- Careful levelling and grading is crucial to the performance of many SUDS features to ensure that water flows through the system without ponding – which can damage vegetation and cause unattractive muddy zones to develop. In particular, grass filter strips and swales must be lower than the impermeable surfaces that they drain.

- Before runoff is allowed to flow through SUDS techniques with surface-formed features such as swales, they must be fully stabilised by planting or temporary erosion protection. This will prevent erosion of the sides and base, and the clogging of other parts of the system by the silt that is entrained.

- Car parking and other paved areas are usually constructed (or partially constructed) during the initial stages of the development, and then used as access roads and storage areas. If pervious surfaces are specified in the SUDS, pavement construction should be carried out at the end of the development programme, unless adequate protection is provided to preventing clogging or blinding once it has been constructed. The storage of soil or subsoil on the surfaces of permeable systems (including filter drains) will destroy their function.
Construction planning, therefore, needs to take account of the programming and erosion, sediment and pollution control measures, together with the need for inspections by the designer to confirm acceptability.

Provision should have been made in the construction contract to review the performance of the SUDS when it is completed, and to allow for minor adjustments and refinements to be made to optimise the physical arrangements, based on observed performance. Such adjustments are likely to have to be made late in the construction phase, or in the maintenance period.

Figure 3.1 Earthworks on a SUDS site
Construction planning needs to take account of the programming and erosion, sediment and pollution control measures, together with the need for inspections.

The features requiring particular attention during the construction phase are: site access, storage of materials, site drainage during construction, and protection of surfaces from erosion, sedimentation or overcompaction.

Construction programming considerations are summarised below. The generalised construction activities shown in the table do not usually occur in a specified linear sequence, and programmes will vary due to season, weather and other unpredictable factors.

<table>
<thead>
<tr>
<th>Construction activity</th>
<th>Programme consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify and sign protection areas (eg buffer zones, filter strips, trees).</td>
<td>Site delineation should be completed before any construction activity begins.</td>
</tr>
<tr>
<td>Construction access, construction entrance, construction routes, equipment parking areas and cutting of vegetation (with any necessary boundary controls).</td>
<td>The first land-disturbing activity. Establish protected areas. Stabilise bare areas and provide temporary protection as construction takes place.</td>
</tr>
<tr>
<td>Sediment traps and barriers. Basin traps, sediment fences, and outlet protection (with any necessary boundary controls).</td>
<td>Install principal basins after construction site is accessed. Install additional traps and barriers as needed during grading.</td>
</tr>
<tr>
<td>Runoff control. Diversion, silt fence, perimeter ditches and outlet protection.</td>
<td>Install key measures after principal sediment traps have been installed and before grading begins. Install any additional runoff control measures during grading.</td>
</tr>
<tr>
<td>Runoff conveyance system. Stabilise stream banks, storm drains, channels, inlet and outlet protection, and slope drains.</td>
<td>Where necessary, stabilise stream banks as early as possible. Install principal runoff conveyance system with runoff control measures. Install remainder of system after grading.</td>
</tr>
<tr>
<td>Clearing and grading. Site preparation: traps, barriers, diversions, drains, surface treatment.</td>
<td>Begin major clearing and grading after principal sediment and key runoff control measures are installed. Clear borrow and disposal areas only as needed. Install additional control measures as grading progresses.</td>
</tr>
<tr>
<td>Surface stabilisation: temporary and permanent seeding, mulching, topsoiling and installing riprap.</td>
<td>Apply temporary or permanent stabilisation measures immediately on all disturbed areas where work is either delayed or complete.</td>
</tr>
<tr>
<td>Building construction: buildings, utilities and paving.</td>
<td>Install necessary erosion and sedimentation control practices as work takes place.</td>
</tr>
<tr>
<td>Landscaping and final stabilisation: topsoiling, planting trees and shrubs, permanent seeding, mulching, installing riprap.</td>
<td>The last construction phase. Stabilise all open areas, including borrow and spoil areas. Remove and stabilise all temporary control measures.</td>
</tr>
<tr>
<td>Commissioning and pre-handover maintenance</td>
<td>Maintenance inspections should be performed weekly, and maintenance repairs should be made immediately after periods of rainfall.</td>
</tr>
</tbody>
</table>
Points to consider:

- Construction access: care should be taken not to damage valuable trees or disturb designated buffer zones. Trees should be protected around the drip line of the branches. Activities that could compact the root zone should be avoided.

- Sediment basins and traps should be installed before any major site grading takes place. Additional sediment traps and silt fences should be installed as grading takes place to keep sediment contained on site at appropriate locations.

- Key runoff control measures should be located in conjunction with sediment traps to divert water from planned undisturbed areas away from the traps and sediment-laden water into the traps. Diversions should be installed above areas to be disturbed before any grading operations. Any perimeter drains should be installed with stable outlets before opening major areas for development. Any additional facilities needed for runoff control should be installed as grading takes place.

- The main runoff conveyance system with inlet and outlet protection measures should be installed early, and used to convey stormwater runoff through the development site without creating gullies or channels. Install inlet protection for storm drains (as soon as the drain is functional) to trap sediment on site in shallow pools and to allow flood flows to enter the storm drainage system safely. Install outlet protection at the same time as the conveyance system to prevent damage to the receiving stream.

- Normally, install stream stabilisation, including necessary stream crossings, independently and ahead of other construction activities. It is usually best to programme this work as soon as weather conditions permit. Site clearing and project construction increases storm runoff, often making stream-bank-stabilisation work more difficult and costly.

- Begin clearing and grading as soon as key erosion and sediment control measures are in place. Once a development area is cleared, grading should follow immediately so that protective ground cover can be re-established quickly. Do not leave any area bare and exposed for extended periods. Leave adjoining areas planned for development, or those that are to be used for borrow and disposal, undisturbed as long as possible to serve as natural buffer zones.

- Runoff control is essential during the grading operation. Temporary diversions, slope drains, and inlet and outlet protection installed in a timely manner can be very effective in controlling erosion during this critical period of development.
After the land is cleared and graded, apply surface stabilisation on graded areas, channels, ditches and other disturbed areas. Stabilise any disturbed area where active construction will not take place for 60 working days, by temporary seeding and/or mulching or by other suitable means. Install permanent stabilisation measures as soon as possible after final grading. Temporary seeding and/or mulching may be necessary during extreme weather conditions with permanent vegetation measures delayed until a more suitable installation time.

Coordinate building construction with other development activities so that all work can take place in an orderly manner and on programme. Experience shows that careful project programming improves efficiency, reduces cost and lowers the potential for erosion and sedimentation problems.

Landscaping and final stabilisation is the last major construction phase, but topsoil stockpiling, tree preservation, undisturbed buffer areas, and well-planned road locations established earlier in the project may determine the ease or difficulty of this activity. All disturbed areas should have permanent stabilisation measures applied. Unstable sediment should be removed from sediment basins and traps and if possible incorporated into the topsoil, not just spread on the surface. All temporary structures should be removed after the area above has been properly stabilised. Borrow and disposal areas should be permanently vegetated or otherwise stabilised.

In planning construction work, it may be helpful to outline all land-disturbing activities necessary to complete the proposed project. Then list all practices needed to control erosion and sedimentation on the site. These two lists can then be combined in a logical order to provide a practical and effective construction programme.

Figure 4.1 Completed swale
When construction is finished, there is likely to be a commissioning period in which the permanent SUDS are made “live”, this is likely to include diversion of drainage flows into the new facilities. If permanent facilities have been used wholly or in part to drain the site, or as other forms of temporary works such as roads or storage areas, then there may be rehabilitation works required to reconstitute or restore them to their design condition. Once the permanent facilities have been demonstrated to work as envisaged, temporary drainage and sediment and erosion control measures can be carefully dismantled so as not to generate sediment loading on downstream systems.